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In this paper the causality problem is considered of an active sound power control system
that attempts to reduce total acoustic potential energy in an enclosed space by total source
power minimization. To find the causally constrained optima under the white random
sound field, time domain analysis based on the classical Wiener filtering technique for the
active sound power control system in the enclosed sound field is accomplished. For
simplicity, a two-monopole source system surrounded by an arbitrary acoustic impedance
condition at the enclosure boundary is considered, which turns out to be a multiple-error
Wiener filtering problem that has six errors. Theoretical causal and non-causal optimal
filters for the white random noise are derived, and their frequency characteristics are also
analyzed by the spectral factorization theorem. Simple numerical simulation for a
one-dimensional sound field considering plane waves is performed to compare the control
performance of non-causal filtering with that of causal filtering. The simulation result shows
an important characteristic of the causally constrained optimal filtering; the basic acoustic
controllability determined by the wavelength and location of control source is still
maintained, even if the control performances in the overall frequency range are degraded
due to the lack of predictability of the primary random excitation signal. The simulation
result also reveals that large portions of the control source power show negative power,
which means that the control source behaves as an active sound power absorber. This result
is different from the well-known property of an optimal control source to minimize the total
source power output in the deterministic sound field where the primary excitation is
harmonic; i.e., the control source neither radiates nor absorbs any net acoustic power under
optimal conditions to minimize the total sound power of the sources.
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1. INTRODUCTION

Various techniques for active control of sound fields have received considerable attention
recently. With regard to the active control of sound in enclosed fields, the prevalent
theoretical basis has relied mostly on the minimization of the acoustic potential energy
present in the enclosure [1]. In parallel with the acoustic energy-based active control
method, the sound power (of sources) based active control strategy has also been developed
[2–4]. Most of the research on active sound power control has been directed towards the
sound radiation problem in free fields.

Although these two strategies of minimizing energy and minimizing source power
output use very different criterion to adjust the control sources, it has been demonstrated
numerically for one-dimensional sound field that the effects in an enclosure of minimizing
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total acoustic potential energy, and of minimizing total source power output, are similar
[3]. Johnson and Elliott [5] have also presented a sound power control method using the
theoretical property of an optimal control source; if acoustic reciprocity exists between
each point on the primary source and each point on the control source then under optimal
conditions to minimize total source power output the acoustic power output of the control
source is exactly zero [3, 4].

In a recent study by the authors [6], it has been found theoretically as well as
experimentally that the source power minimization gives good results for total acoustic
potential energy reduction, if the enclosed field is lightly damped with a frequency range
which includes the low modal density as well as high modal density range. (In general, it
is not always true in every sound field which has arbitrary boundary conditions, because
the sound power of sources and sound energy in a surrounding volume are related by the
acoustic energy balance). Thus, the active sound power control can provide an alternative
practical means for global noise reduction in an enclosed space. It can also augment the
many useful results for active sound power control in a free field which have been dealt
with in most previous studies.

In a previous work [6], an acoustic field analysis in the frequency domain assuming
deterministic excitation, such as single or multiple sinusoidal excitation, was employed to
assess the acoustic possibility of global noise reduction (or total acoustic potential energy
reduction) in enclosures by sound power control, and to investigate the basic characteristics
of the active sound power control method. The frequency domain optimization method
would be adequate for predicting the performance of an active control system, if one were
to deal with deterministic sound fields. However, this method cannot necessarily be applied
in cases in which the primary sound field is stationary random in nature. This is because
the frequency domain optimization often yields a physically unrealizable optimal control
strategy that requires the control sources to act non-causally with respect to the primary
sources. That is, the secondary sources involved may have to emit signals prior to the
emission of signals by the primary source if optimal results are to be achieved. For
example, the active minimizations of total sound power due to a primary monopole source
and a secondary monopole source in a free field [2] or a one-dimensional infinite duct field
[7] require non-causal optimal filters, as pointed out in references [2, 7]. In other words,
the system causality is not a constraint when the primary excitation is sinusoidal, because
future values of the primary excitation signal are completely predictable under steady state
conditions. However, the causality becomes an important issue in random sound field
control, because future values of the excitation cannot be predicted.

On the causality in the active sound and vibration control system, several analytic studies
have been reported in the literature [8–10]. Nelson et al. [8] have developed a time-domain
formulation for the case of active control of sound, and dealt with the problem of
minimizing the total acoustic potential energy in an enclosure and the minimization
problem of two point source power output in a free field. Based on Nelson et al.’s
formulation, Joplin et al. [9] accomplished a numerical calculation to find the optimum
causal filter for the active control of low frequency random sound in enclosures. Burdisso
et al. [10] carried out a causality analysis of feedforward point-vibration control of elastic
systems by frequency domain formulation. However, there has not been any attempt to
evaluate the degree of the total acoustic potential energy reduction in enclosed fields when
subjected to random excitation by applying causally constrained sound power control.

In this paper the active global control is considered of random sound field in an
enclosure generated by a stationary random noise source. The control approach used is
focused on the minimization of total source power output (not on the direct minimization
of total acoustic potential energy in the control volume). Its effectiveness is assessed in



pp (t)
+

gpp (t)

qp (t)

ps (t)
+

gss (t)

qs (t)

gsp (t) gps (t)

h0 (t)

Zw (ω)

     809

terms of acoustic potential energy that remains in the enclosure when the control source
is operating. The main purpose of this study is to determine the causally constrained
optimal characteristics of the active sound power control system for reducing the total
acoustic potential energy in an enclosed space. The theoretical approach adopted is the
time domain formulation method, based on the classical Wiener filtering technique [11, 12].
The frequency characteristics of the causally constrained optimal filter are also derived to
compare them with the characteristics of the unconstrained optimal filter. A numerical
example for a simple one-dimensional lightly damped random sound field is presented
to compare the control results of the causal filter with those of the unconstrained
filter.

2. WIENER FILTERING ANALYSIS OF ACTIVE SOUND POWER CONTROL

2.1.  -      

We consider a single channel source power control system in an enclosed sound field
with arbitrary acoustic impedance condition at the enclosure walls (ZW (v)), as illustrated
in Figure 1. The primary source strength (or volume velocity) fluctuation qp (t) is a
stationary random signal and qs (t) is a coherent secondary source strength fluctuation.
Hereafter, subscripts p and s indicate primary source and secondary control source
respectively. For a systematic analysis that includes the arbitrary shape of the enclosure
and the arbitrary boundary condition of the enclosure walls, the impulse response function
of the system is expressed by an acoustic Green function in the time domain, which is
a unit solution of the acoustic wave equation. Green function gij (t) denotes the acoustic
pressure response at r� = r� i due to a source of unit strength impulse applied at r� = r� j , and
it satisfies the acoustic impedance boundary condition of the enclosure walls. The general
multi-source situation would be a simple extension of this case as long as one handles linear
acoustics.

In this case, we now wish to find the optimal control filter h0(t) to minimize the total
acoustic power output of the sources. We also wish to calculate the best that can be
achieved in reducing the total acoustic potential energy in the enclosure when the optimal
filter is operating.

Figure 1. The active sound power control problem in the time domain with an arbitrary acoustic impedance
condition at the enclosure walls (Zw(v)), composed of a primary source, the strength of which is qp(t), and a
secondary source qs(t). The gij(t) is the acoustic Green function in the time domain, which means the acoustic
pressure response at r� = r� i due to a source of unit strength impulse applied at r� = r� j , and h0(t) represents the
active controller; an optimal filter relates the control source output to that of the primary source.
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The filter output, that is, the secondary source strength, can be expressed as

qs (t)= h0(t) ( qp (t), (1)

where the asterisk represents the convolution process. The acoustic pressure fluctuations
on the primary source and secondary source, pp (t) and ps (t), can be expressed as

pp (t)= gpp (t) ( qp (t)+ gps (t) ( qs (t), ps (t)= gsp (t) ( qp (t)+ gss (t) ( qs (t). (2a, b)

The cost function to be minimized is the total acoustic radiation power of the sources.
Assuming a stationary random process, the time averaged total acoustic power due to the
primary and secondary sources can be expressed as

J=E[qp (t) pp (t)]+E[qs (t) ps (t)], (3)

where E[ · ] denotes the ensemble average operator. In equation (3), the first term
represents the power output of the primary source and the second term the power output
of the secondary source.

2.2. –       

In order to formulate the present minimization problem (the cost function of which is
described by equation (3)) into a Wiener filtering one, one can use the following identity

E[ f(t)g(t)]= 1
2E[ f 2(t)+ g2(t)− { f(t)− g(t)}2]. (4)

Then the cost function can be rewritten as

J= 1
2E[q2

p (t)+ p2
p (t)− {qp (t)− pp (t)}2]+ 1

2E[q2
s (t)+ p2

s (t)− {qs (t)− ps (t)}2]. (5)

Substitution of equations (2a) and (2b) into equation (5), and appropriate algebraic
manipulation gives

J=E[ppp (t) qp (t)]+ 1
2E[q2

p (t)]+ 1
2E[p2

sp (t)]+E[q2
s (t)]+ 1

2E[p2
ps (t)]+ 1

2E[p2
ss (t)]

− 1
2E[{pps (t)− qp (t)}2]− 1

2E[{psp (t)− qs (t)}2]− 1
2E[{pss (t)− qs (t)}2], (6)

where

pij = gij (t) ( qj (t), i, j= p or s. (7)

We now wish to find the optimal filter that minimizes the total acoustic power output,
which is expanded in nine terms as in equation (6). The first three terms in equation (6)
are not a function of the optimal filter h0(t). That is, these terms can be considered as
constant, and not affected by the optimal filter. On the other hand, the remaining six terms
are affected by active control filter h0(t); that is, they are a function of the optimal filter.
Therefore, the cost function (that is, the total source power output) consists of a weighted
sum of six mean-squared errors and a constant,

J= s
6

i=1

wiE[e2
i (t)]+C, (8)

where the wi are weighting factors, the ei are error signals, and C is a constant:

w1 =1, e1(t)=−qs (t)=−qp (t) ( h0(t), (9a, b)

w2 = 1
2, e2(t)=−pps (t)=−qp (t) ( h0(t) ( gps (t), (9c, d)
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Figure 2. Interpretation of the active sound power control problem in terms of the six-error Wiener filtering
problem. One wishes to determine the optimal filter h0(t) that minimizes the weighted sum of squared errors (see
equations (8) and (9)): J=E[e2

1(t)]+ 1
2E[e2

2(t)]+ 1
2E[e2

3(t)]− 1
2E[e2

4(t)]− 1
2E[e2

5(t)]− 1
2E[e2

6(t)]+C.

w3 = 1
2, e3(t)=−pss (t)=−qp (t) ( h0(t) ( gss (t), (9e, f)

w4 =−1
2, e4(t)= qp (t)− pps (t)= qp (t)− qp (t) ( h0(t) ( gps (t), (9g, h)

w5 =−1
2, e5(t)= psp (t)− qs (t)= qp (t) ( gsp (t)− qp (t) ( h0(t), (9i, j)

w6 =−1
2, e6(t)= pss (t)− qs (t)= qp (t) ( h0(t) ( gss (t)− qp (t) ( h0(t), (9k, l)

C=E[ppp (t) qp (t)]+ 1
2E[q2

p (t)]+ 1
2E[p2

sp (t)]. (9m)

Assuming a time invariant process, one reconstructs each error signal into the desired
signal (di (t)) which is not influenced by the optimal filter h0(t), and the estimated signal
(d
 i (t)) which is filtered by h0(t):

e1(t)= d1(t)− d
 1(t)=0− qp (t) ( h0(t), (10a)

e2(t)= d2(t)− d
 2(t)=0− qp (t) ( gps (t) ( h0(t), (10b)

e3(t)= d3(t)− d
 3(t)=0− qp (t) ( gss (t) ( h0(t), (10c)

e4(t)= d4(t)− d
 4(t)= qp (t)− qp (t) ( gps (t) ( h0(t), (10d)
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e5(t)= d5(t)− d
 5(t)= qp (t) ( gsp (t)− qp (t) ( h0(t), (10e)

e6(t)= d6(t)− d
 6(t)=0− qp (t) ( (1− gss (t)) ( h0(t). (10f)

Hence, one can now interpret the problem in terms of the multiple-error Wiener filtering
problem which has six errors and a constant, as illustrated in Figure 2. In this Wiener
filtering problem, the received reference signals (ri (t), i=1, 2, . . . , 6) can be expressed as

r1(t)= r5(t)= qp (t), r2(t)= r4(t)= qp (t) ( gps (t), (11a, b)

r3(t)= qp (t) ( gss (t), r6(t)= qp (t) ( (1− gss (t)). (11c, d)

By applying the weighted multiple-error Wiener filtering technique outlined in reference [8],

s
6

i=1

wiRrdi (t)−g
T

t0

h0(t) s
6

i=1

wiRrri (t− t) dt=0, (12)

where the correlation functions are Rrdi (t)=E[ri (t− t)di (t)] and Rrri (t)=E[ri (t− t)ri (t)],
one can obtain a Wiener–Hopf integral equation that the impulse response of the optimal
filter h0(t) should satisfy:

{gps (−t)+ gsp (t)} ( Rqpqp (t)

+g
T

t0

h0(t)[{gss (−(t− t))+ gss (t− t)} ( Rqpqp (t− t) dt=0. (13)

Now, we assume that the primary excitation is white random noise with unit spectral
density, that is, the autocorrelation function of qp (t), Rqpqp (t)= d(t), to check the
lower bound of the active control performance by a causally operating filter. Then, the
Wiener–Hopf integral equation becomes

gps (−t)+ gsp (t)+g
T

t0

h0(t)[gss (−(t− t))+ gss (t− t)] dt=0. (14)

Depending on the available data history, Wiener filters can be classified into three
types: (1) t0 =−a, T=a, unconstrained IIR (infinite impulse response) Wiener filter;
(2) t0 =0, T=a, causal IIR Wiener filter; (3) t0 =0, T=Tf , causal FIR (finite impulse
response) Wiener filter. In the next three sections, the optimal filters of the above three
types for minimizing the total sound power will be derived respectively.

2.3.  IIR 

From equation (14), the Wiener–Hopf integral equation for the unconstrained (on the
causality) optimal filtering can be written as

gps (−t)+ gsp (t)+g
a

−a

h0(t)[gss (−(t− t))+ gss (t− t)] dt=0. (15)
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The characteristics of the optimal filter in the frequency domain can easily be obtained
by taking Fourier transform of equation (15); that is,

H0(v)=−
G(ps (v)+Gsp (v)
G(ss (v)+Gss (v)

=−
G(ps (v)+Gsp (v)

2Rss (v)
, (16)

where Gps , and Gsp are acoustic transfer impedance functions between primary source and
secondary source, Gss is the acoustic radiation impedance of the secondary source, and Rss

is the real part of Gss ; Rss (v)=Re {Gss (v)}.
If the acoustic reciprocity relation between the two sources holds, that is,

Gps (v)=Gsp (v), the transfer function of the unconstrained optimal filter becomes

H0(v)=−
Rsp (v)
Rss (v)

, (17)

where Rsp (v)=Re {Gsp (v)}. In fact, the above result in equation (17) is exactly the same
as that obtained by frequency domain analysis in a previous study [3]. In this case, it is
also well known that the control source power output under the optimal condition becomes
exactly zero [3–5]. That is, it neither radiates nor absorbs any net acoustic power.

However, this unconstrained optimal filter is not physically realizable for the active
control of the random sound field, since it requires future data of the primary source
output, which is randomly fluctuating. On the other hand, if a sound field is deterministic,
this unconstrained optimal filter is physically realizable, since the prediction of the
deterministic signal is possible by the causal delay process.

2.4.   IIR 

From equation (14), the Wiener–Hopf integral equation for causally constrained optimal
filtering for the white random noise, with unit spectral density, can be written as

gps (−t)+ gsp (t)+g
a

0

h0(t)[gss (−(t− t))+ gss (t− t)] dt=0, te 0, (18a)

h0(t)=0, tQ 0. (18b)

In order to obtain the optimal causal filter from the above integral equation,
a well-known spectral factorization process in the textbooks [11–13] can be used.
The derivation of the optimal causal solution is presented in full in the Appendix. In this
case, however, we cannot directly apply the classical spectral factorization method to
solve the integral equation (18a), since the integral equation (18a) includes only impulse
response functions. (The standard Wiener–Hopf integral equation consists of correlation
functions and an impulse response of optimal filter). Therefore, we need to factorize the
acoustic radiation impedance function of the sound source. The optimal causal solution
is given by

H0(v)=−$ 1
2R+

ss ( jv)%$Gps (−jv)+Gsp ( jv)
R−

ss ( jv) %+

, (19)

where

Rss ( jv)=R+
ss ( jv)R−

ss ( jv), (20)
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R+
ss ( jv) represents the minimum phase part of Rss ( jv) and the remaining R−

ss ( jv) is the
non-minimum phase part, the subscript ‘‘+’’ sign meaning the causal part. If the acoustic
reciprocity between two sources holds, then the transfer function for the optimal filter
reduces to

H0(v)=−$ 1
R+

ss ( jv)%$Rsp ( jv)
R−

ss ( jv)%+

. (21)

It is noteworthy that these causal filters resulting in equations (19) and (21) are
inherently different from the characteristics of the unconstrained optimal filters which
were derived by unconstrained filtering in section 2.3 (see equations (16) and (17)) or by
frequency domain analysis in a previous study [3].

2.5.  FIR      

From equation (14), the Wiener–Hopf integral equation for causally constrained
optimal FIR filtering can be expressed as

gps (−t)+ gsp (t)+g
Tf

0

h0(t)[gss (−(t− t))+ gss (t− t)] dt=0, te 0, (22a)

h0(t)=0, tQ 0. (22b)

In the discrete time domain, the Wiener–Hopf integral equation can be written as

gps (−n)+ gsp (n)+ s
L−1

i=0

h0(n)[gss (−n+ i)+ gss (n− i)]=0, ne 0, (23a)

h0(n)=0, nQ 0, (23b)

where L is the finite record length.
In equation (23a), the transfer impulse response between two sources, gps (n) and gsp (n),

are physically causal; i.e., there is no response before excitation. Also, these impulse
responses in an enclosure are composed of the delayed combinations of the initial
excitation; i.e., linear superposition of a direct wave from a source and many reflected
waves from surface boundaries. Therefore, it is clear that gps (−n)=0 for ne 0 in
equation (23a). If the two sources are collocated—in fact, this situation is a trivial case
in active noise control—gps (0) has large value, because the first direct wave component is
propagating without finite delay of the excitation.

If we let h0(n) be the transversal filter of which the number of coefficient is L, then
equation (23a) can be expressed in vector form:

gsp (n)+ gT
ssh0 =0, ne 0, (24)

where

gss(−n)+gss(n)

gss(−n+1)+gss(n−1)
gss(n)=G

G

G

K

k
···

G
G

G

L

l
, (25a)

gss (−n+L−1)+ gss (n−L+1)

h0 = [h0h1 · · · hL−1]T, (25b)
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and, written in matrix form truncated by L,

gsp (0) 2gss (0) gss (1) gss (2) · · · gss (L−1)

G
G

G

G

G

K

k

gsp (1)
G
G

G

G

G

L

l

G
G

G

G

G

K

k

gss (1) 2gss (0) gss (1) · · · gss (L−2)
G
G

G

G

G

L

l

gsp (2)
+

gss (2) gss (1) 2gss (0) · · · gss (L−3)
···

···
···

···
· · ·

···
gsp (L−1) gss (L−1) gss (L−2) gss (L−3) · · · 2gss (0)

h0 0

h1 0
×G

G

G

K

k

h2 G
G

G

L

l

G
G

G

K

k

0 G
G

G

L

l

. (26)
···

=
···

hL−1 0

We denote the matrix equation (L×L matrix version of the normal Wiener–Hopf
equation) as

gsp +Gssh0 = 0. (27)

Then the optimal FIR filter can be obtained as

h0 =−G−1
ss gsp . (28)

In fact, the elements gss (n) of matrix Gss denote the sound pressure responses on
the secondary source due to its own excitation. In other words, gss (n) represents the
self-radiation process of the secondary source. Thus, we will call the matrix Gss the
‘‘self-radiation matrix’’, which is analogous to the auto-correlation matrix in signal
processing. The self-radiation matrix is symmetric and takes the form of a Toeplitz matrix,
the elements of which along the same diagonal have the same value. However, the
self-radiation matrix in general is not non-negative definite, which is different from the
auto-correlation matrix. The self-radiation matrix has the largest values of the diagonal
terms, since gss (0) in diagonal terms means the first direct wave without any time delay
or amplitude decay due to boundary reflections. Exploiting these properties of the
self-radiation matrix, the above matrix equation (28) can be solved efficiently using
Levinson’s algorithm [14].

2.6.  

The optimal causal IIR Wiener solution obtained in section 2.4 provides a criterion for
the lower bound of the control performance that can be achieved by an active sound
power control system. As the primary sound field becomes deterministic, the power
control performance will be better, since the sound field is more predictable. When a sound
field is subject to purely deterministic excitation such as single or multiple sinusoidal
excitation, the upper bound can be determined by the unconstrained IIR Wiener filter
as in section 2.3. The causal optimal FIR Wiener filter in the discrete time domain
(section 2.5) can provide us with useful information for the active sound power control
system before real-time adaptive filtering implementation, because the adaptive filter must
converge to the theoretical causal optimal FIR filter for successful adaptive feedforward
control.
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In general, the practical sound fields to be actively controlled have random
characteristics as well as deterministic characteristics. For example, the engine-induced
interior noise of road vehicles is composed of harmonic components, which are strongly
correlated with the periodic reciprocal motion of the engine and other random noise.
Another typical example is fan noise, which has harmonic components of BPF (blade
passage frequency) related to the rotational speed and the number of blades; and
aeroacoustic flow noise, which is random in nature. Therefore, in general sound fields, the
performance of the active power control would be limited by unconstrained optimal
filtering (upper bound) and causally constrained optimal filtering (lower bound) depending
on the nature of the signal. In fact, in any real implementation, there will be additional
factors that may further degrade the control performance: a finite sampling time, the
number of filter coefficients, the measurement noise, and so on.

3. SIMULATION

In order to investigate controllability by the causally constrained sound power control
for the random sound field in an enclosed space, we consider a one-dimensional circular
duct which has a primary source and a secondary one, as illustrated in Figure 3. The plane
waves are assumed to have wavelengths of interest that are much longer than the
dimension of the duct cross-section.

In this duct model, the Green function which represents the acoustic pressure response
at x= xi due to a source of unit strength applied at x= xj , and which satisfies all the
boundary conditions; can be readily obtained as

Gij (k)=
r0c
2S

{R0 e−jkxi +ejkxi}{ejk(L− xj ) +RL e−jk(L− xj )}
ejkL −R0RL e−jkL , 0E xj E xi , (29a)

Gij (k)=
r0c
2S

{ejk(L− xi ) +RL e−jk(L− xi )}{R0 e−jkxj +ejkxj}
ejkL −R0RL e−jkL , xi E xj EL, (29b)

where k is the wavenumber and R0 and RL are the complex reflection coefficients at the
ends.

In this simulation, the lightly damped boundary condition in which the reflection
coefficients on both ends are 0·9 was considered. In this instance, we would like to
emphasize that the control source location in the simulation configuration is not for the
cancellation of downstream noise in the traditional duct noise problem, but rather for
investigation of the effect of the control source location on the total sound power control
of sources.

For the white random sound field, we calculated the total acoustic potential energy
attenuation (which is the ultimate goal of the active sound power control in this paper)
as well as the total sound power attenuation itself, by unconstrained optimal filtering
(section 2.3) and causally constrained optimal filtering (sections 2.4 and 2.5). Derivation

Figure 3. The one-dimensional finite circular duct model in which a primary source is located at xp with
strength qp and a secondary source at xs with qs . R0 and RL are the reflection coefficients at both ends: L=1 m,
D=0·16 m, xp =0 m, xs =0·4 m, qp =2×10−3 m3/s, and R0 =RL =0·9.
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of the theoretical causal filter (section 2.4) was so complicated for the model that we tried
to obtain the causally constrained optimal FIR filter (section 2.5) which has a sufficient
number of filter coefficients. The speed of sound was taken to be 343 m/s, the sampling
frequency was 3·43 kHz, and the number of FIR filter coefficients was taken to be 100,
which is large enough to model the decay of the impulse response of the main acoustic
plant.

In Figure 4(a) are illustrated the total sound power distribution, before and after
unconstrained optimal filtering (section 2.3) and causal optimal FIR filtering (based on
the Wiener–Hopf matrix equation (28) in section 2.5) have been applied. In Figure 4(b)
are shown the total acoustic potential energy distributions. In Figures 4(c) and 4(d)
are shown the insertion losses of the active control system; i.e., the level drops caused
by its insertion. In Figure 4(e) is shown the coupling function, which represents the
controllability of the control source when the sound field is subject to deterministic

Figure 4. The total sound power(a) and total acoustic potential energy (b) before (——) and after active source
sound power control by an unconstrained optimal filter (——) and a causally constrained optimal filter (- - - -),
insertion losses due to each filtering (c, d) and the coupling function (e), in the lightly damped one-dimensional
duct system (Figure 3).
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excitation. The insertion loss (IL) on a decibel scale due to active sound power control
is determined by IL(v)=−10 log10 {1− h2

ps (v)}, where coupling function is expressed as
h2

ps (v)=R2
ps (v)/{R2

pp (v)Rss (v)} and Rij (v)=Re (Gij (v)} [6].
From the control results by unconstrained filtering (thin solid lines) in Figures 4(a)

and 4(b), one can see that the total acoustic potential energy in the enclosed space
(Figure 4(b)) as well as the total sound power of the source itself (Figure 4(a)), was reduced
by the active sound power control. However, there are some frequency components
(230 Hz and 610 Hz) which are not well controlled. We can realize that these components
correspond to ones the coupling function values of which are small (Figure 4(e)). In other
words, the control source is weakly coupled with the primary excitation field for these
frequency components [6]. It is noteworthy that this unconstrained optimal filtering result
has two physical meanings. One is that it expresses the control result achieved by a
physically realizable causal filter when the primary sound field is deterministic in nature.
The other is that it represents the control result due to a non-causal filter (which is in fact
unrealizable in practice) when the sound field has a random behavior.

On the other hand, one can see that the causal filtering (dotted lines) gives worse control
results than the unconstrained filtering ones (thin solid lines) in Figures 4(a) and 4(b),
as expected. However, it is noteworthy that the fundamental controllability, which is
determined by the acoustic coupling strength of the control source with the primary source,
is still maintained, as can be seen by comparing the insertion loss curves (Figures 4(c)
and 4(d)). A more detailed investigation of Figures 4(c) and 4(d) leads to the fact that the
coupling function values of all the acoustic resonances, are nearly unities in Figure 4(e);
high controllability is greatly suppressed. However, the second and fourth antiresonances
(230 Hz and 610 Hz) (coupling function values) are nearly zero in Figure 4(e); low
controllability, are rather increased after the control. That is, these frequency components
are difficult to control at the control source location. In practical implementation, there
might be more degradations of the control performance in these antiresonance frequency
components by the weak observability due to the measurement noise.

In Figures 5(a) and 5(b) are represented the frequency characteristics of the
unconstrained optimal filter and the causally constrained optimal filter respectively. From
Figure 5(a), one can see that the unconstrained optimal filter has only a real part (solid
line); that is, the control source is driven exactly in phase or completely out of phase with
the primary source. On the other hand, the causally constrained optimal filter (Figure 5(b))
has an imaginary part (dotted line) as well as a real part (solid line), which means that
the control source is driven at a different phase from that of the primary source. From

Figure 5. The frequency characteristics of the unconstrained optimal filter (a) and the causally constrained
optimal filter (b) in the lightly damped one-dimensional duct system (Figure 3). ——, real part; - - - -, imaginary
part.



1.0

0.3

–0.3
0.0

Frequency (kHz)

C
on

tr
ol

 s
ou

rc
e 

po
w

er
 (

w
at

t)

0.2

0.1

0.0

–0.1

–0.2

0.2 0.4 0.6 0.8

     819

Figure 6. The control source power output on a linear scale after causally constrained optimal filtering in the
lightly damped one-dimensional duct system (Figure 3).

the comparison of Figure 5(a) with Figure 5(b), one can also see that the real part of each
optimal filter, which represents the components of the control source that are in phase with
the primary source, shows a similar trend.

In order to investigate the behavior of the causal optimal control source, the frequency
characteristics of control source power were calculated as in Figure 6. One can note that
the control source power, which should be exactly zero in the deterministic sound power
control situation, as discussed in references [3–5], is not maintained at zero after control.
On the contrary, we can see that the control source acts as a sound power absorber
for a large portion of the frequency components, as the negative values in Figure 6 imply.
This fact in sound power control is analogous to the behaviour of the optimal control
source in minimizing the total acoustic potential energy in enclosures [8, 9], even though
these two strategies, of minimizing the source power output and minimizing the energy,
use different criteria to adjust the control source.

4. CONCLUSIONS

In this study, a causality analysis of the sound power based active global noise
control system in enclosed space has been accomplished, based on the classical Wiener
filtering technique. For simplicity, a two monopole source system surrounded by enclosure
boundaries which have arbitrary acoustic impedance condition was considered, which
turned out to be a multiple-error Wiener filtering problem which has six errors.
A theoretical causal IIR filter and a causal FIR filter for minimizing total sound power
in an enclosed space under white random excitation have been derived. For comparison
with a causally constrained optimal solution, the unconstrained optimal solution has
also been obtained. From the obtained optimal filters, one can estimate the theoretical
performance limit of an active sound power control system in an enclosed space. That is,
the causal optimal filter provides the lower bound of control performance and the
unconstrained optimal filter provides the upper bound.

Numerical simulation for a simple one-dimensional sound field considering plane waves
has shown a strong possibility for the reduction of the total acoustic potential energy in
an enclosed space using causally constrained optimal filtering which minimizes the total
sound power. The simulation result for the random sound field shows that the fundamental
controllability determined by the wavelength and location of the control source is still
maintained, even if the control performances in the overall frequency range are degraded
due to the lack of predictability of the primary random excitation signal. The simulation
result has also revealed that a large portion of the control source power shows a negative
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value, which means that the control source behaves as an active sound power absorber.
This result of power absorption is clearly different from the well-known property of an
optimal control source used to minimize the total source power output in the deterministic
sound field; i.e., in the deterministic sound field, the control source neither radiates nor
absorbs any net acoustic power under optimal conditions when minimizing the total sound
power of sources.
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APPENDIX: OPTIMAL CAUSAL SOLUTION

One denotes by y(t) the left side of the equation (18a):

y(t)= gps (−t)+ gsp (t)+g
a

−a

h0(t)[gss (−(t− t))+ gss (t− t)] dt. (A1)

Clearly,

y(t)=0 for te 0, h0(t)=0 for tQ 0. (A2a, b)
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It suffices, therefore, to find a causal function h0(t) and an anticausal function y(t)
satisfying equations (A1) and (A2).

One denotes the Y(s) and H0(s) the Laplace transforms of y(t) and h0(t), respectively.
As is well-known [13], Y(s) is analytic for Re [s]Q 0, since it is an anticausal function,
and H0(s) is analytic for Re [s]q 0 since it is causal. The integral in equation (A1) means
a convolution of [gss (−t)+ gss (t)] with h0(t). Taking Laplace transforms of both sides, one
concludes, therefore that

Y(s)=Gps (−s)+Gsp (s)+H0(s)[Gss (−s)+Gss (s)]. (A3)

Our goal is to find two functions, Y(s) and H0(s), satisfying equation (A3) and the stated
analyticity conditions:

Y(s) for Re [s]Q 0 and H0(s) for Re [s]q 0. (A4)

In equation (A3), we let

Gss (−s)+Gss (s)=2Rss (s), (A5)

where Rss (s) is the real part or resistive part of the acoustic radiation impedance of the
secondary source when it is operating alone; i.e., Rss (s)=Re [Gss (s)]. The real part of the
radiation impedance of a source determines the acoustic radiation power of the source
itself. Therefore it cannot be negative (it would be zero if an acoustic field was ideally
reactive; that is, the system was surrounded by ideal rigid walls), and it is even symmetric
on the frequency domain. These properties of the real part of the radiation impedance are
analogous to those of the autospectrum of a signal. Hence, the factorization of the real
part of acoustic radiation impedance is possible using the spectral factorization theorem
[11–13]. That is, one can express Rss (s) as

Rss (s)=R+
ss (s)R−

ss (s), (A6)

where the R+
ss (s) represents the minimum phase system part, and the remaining R−

ss (s) the
non-minimum phase part. That is, the function R+

ss (s) and its inverse 1/R+
ss (s) are analytic

for Re [s]q 0, and the function R−
ss (s) and its inverse 1/R−

ss (s) are analytic for Re[s]Q 0.
To factorize Rss (s), one assigns the left-hand plane poles and zeros to R+

ss (s), and the
right-hand plane poles and zeros to R−

ss (s).
Substitution of equations (A5) and (A6) into equation (A3) gives

Y(s)=Gps (−s)+Gsp (s)+2R+
ss (s)R−

ss (s)H0(s),

Y(s)
R−

ss (s)
=

Gps (−s)+Gsp (s)
R−

ss (s)
+2R+

ss (s)H0(s). (A7)

Then, one can decompose the ratio [Gps (−s)+Gsp (s)]/R−
ss (s) into causal and anticausal

parts:

Gps (−s)+Gsp (s)
R−

ss (s)
=$Gps (−s)+Gsp (s)

R−
ss (s) %+

+$Gps (−s)+Gsp (s)
R−

ss (s) %−

, (A8)

where the subscript ‘‘+’’ sign denotes the causal part that is analytic for Re [s]q 0, and
the subscript ‘‘−’’ sign denotes the anticausal part that is analytic for Re [s]Q 0.

If the ratio is rational in s, to decompose it into the causal and anticausal parts, one
can expand it into a sum of linear terms (partial fraction expansion). One assigns the terms
the poles of which are on the left-hand plane to the causal part, and the remaining terms
to the anticausal part.
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Substitution of equation (A8) into equation (A7) then yields

Y(s)
R−

ss (s)
=$Gps (−s)+Gsp (s)

R−
ss (s) %+

+$Gps (−s)+Gsp (s)
R−

ss (s) %−

+2R+
ss (s)H0(s). (A9)

Since H0(s) is causally constrained, the unknown causal optimal filter H0(s) can be
obtained from the equality for the region Re [s]q 0;

0=$Gps (−s)+Gsp (s)
R−

ss (s) %+

+2R+
ss (s)H0(s).

Therefore,

H0(s)=−$ 1
2R+

ss (s)%$Gps (−s)+Gsp (s)
R−

ss (s) %+

. (A10)

Clearly, H0(s) is causal, because the functions 1/R+
ss (s) and [{Gps (−s)+Gsp (s)}/R−

ss (s)]+
are, by construction, analytic for Re [s]q 0. To complete the solution procedure, one can
obtain the auxiliary result from the consideration for the region Re [s]Q 0;

Y(s)=R−
ss (s)$Gps (−s)+Gsp (s)

R−
ss (s) %−

. (A11)

One can readily see that Y(s) is anticausal by construction.
Finally, one can obtain the frequency response characteristics of the optimal causal filter

from the relationship between the Fourier transform of a causal function and the unilateral
Laplace transform [13]:

H0(v)=−$ 1
2R+

ss (s)( jv)%$Gps (−jv)+Gsp ( jv)
R−

ss ( jv) %+

. (A12)


